Introduction
Hypocalcemia (low blood calcium) is an important determinant of fresh cow health and milk production. Five key principles shape our understanding of this common metabolic disease and how to manage it.

- Most second and greater lactation cows have a transient hypocalcemia around calving (Kimura et al., 2006).
- Hypocalcemia is linked to other fresh cow problems (Goff, 2008, Oetzel, 2011).
- Supplementation with oral calcium is the preferred approach for supporting cows that are exhibiting early signs of milk fever but are still standing (Oetzel, 2011).
- Subclinical hypocalcemia has greater associated costs to your dairy than do clinical cases of milk fever (Oetzel, 2011).
- Even herds with successful anionic salts programs and minimal cases of clinical milk fever will benefit from strategic use of oral calcium supplements (Oetzel, unpublished data, 2012).

The start of each new lactation challenges a dairy cow’s ability to maintain normal blood calcium concentrations. Milk (including colostrum) is very rich in calcium, and cows must quickly shift their priorities to adjust for this sudden calcium outflow. Average blood calcium concentrations noticeably decline in second or greater lactation cows around calving, with the lowest concentrations occurring about 12 to 24 hours after calving (Figure 1) (Goff, 2008, Kimura et al., 2006).

Subclinical Hypocalcemia Overview
Subclinical hypocalcemia can be defined as low blood calcium concentrations without clinical signs of milk fever. Subclinical hypocalcemia affects about 50% of second and greater lactation dairy cattle fed typical pre-fresh diets. If anions are supplemented to reduce the risk for milk fever, the percentage of hypocalcemic cows is reduced to about 15 to 25% (Oetzel, 2004).

A cow does not necessarily have to become recumbent (down) to be negatively affected by hypocalcemia. With or without obvious clinical signs, hypocalcemia has been linked to a variety of secondary problems in post-fresh cows (Goff, 2008, Oetzel, 2011). This happens because blood calcium is essential for muscle and nerve function - particularly functions that support skeletal muscle strength and gastro-intestinal motility. Problems in either of these areas can trigger a cascade of negative events that ultimately reduce dry matter intake, increase metabolic diseases, and decrease milk yield (Goff, 2008). This is illustrated in Figure 2.

Figure 1. Plasma concentrations of total calcium before and after calving in mature Jersey cows with or without clinical milk fever (Kimura et al., 2006).

Early Postpartum Hypocalcemic Cascade

A cow does not necessarily have to become recumbent (down) to be negatively affected by hypocalcemia.
Subclinical hypocalcemia is more costly than clinical milk fever because it affects a much higher percentage of cows in the herd (Oetzel, 2011). For example, if a 2000-cow herd has a 2% annual incidence of clinical milk fever and each case of clinical milk fever costs $300 (Guard, 1996), the loss to the dairy from clinical cases is about $12,000 per year. If the same herd has a 30% annual incidence of subclinical hypocalcemia in second and greater lactation cows (assume 65% of cows in the herd) and each case costs $125 (an estimate that accounts for milk yield reduction and direct costs due to increased ketosis and displaced abomasum), then the total herd loss from subclinical hypocalcemia is about $48,750 per year. This is about 4 times greater than the cost of the clinical cases.

A recently published, large multi-site study shows that hypocalcemia around calving is most strongly associated with reduced milk yield (Chapinal et al., 2012) and increased risk for displaced abomasum (Chapinal et al., 2011). These studies also demonstrated that the cutpoint for serum total calcium is higher (about 8.5 mg/dl) than was previously assumed (see Figures 3 and 4).

![Figure 3](image1.png)

Figure 3. Effect of serum total calcium on milk yield for the first 4 DHI tests after calving. Different cutpoints were derived for serum samples collected on weeks -1, 1, 2, and 3 after calving. Data are from 2,365 cows in 55 Holstein herds in Canada and the US (Chapinal et al., 2012).

![Figure 4](image2.png)

Figure 4. Effect of serum total calcium on the odds for displaced abomasum after calving. Different cutpoints were derived for serum samples collected on weeks -1, 1, 2, and 3 after calving. Data are from 2,365 cows in 55 Holstein herds in Canada and the US (Chapinal et al., 2011).

Treatments for Subclinical Hypocalcemia and Clinical Milk Fever

Clinical signs of milk fever in dairy cattle around calving may, for convenience, be divided into three stages. Stage I milk fever is early signs without recumbency. It may go unnoticed because its signs are subtle and transient. Affected cattle may appear excitable, nervous, or weak. Some may shift their weight frequently and shuffle their hind feet (Oetzel, 2011).

Oral calcium supplementation is the best approach for hypocalcemic cows that are still standing, such as cows in Stage 1 hypocalcemia or who have undetected subclinical hypocalcemia (Oetzel, 2011). Cows absorb an effective amount of calcium into her bloodstream within about 30 minutes of supplementation. Blood calcium concentrations are supported for only about four to six hours afterwards (Goff and Horst, 1993, 1994) for most forms of oral calcium supplementation.

Intravenous (IV) calcium is not recommended for treating cows that are still standing (Oetzel, 2011). Treatment with IV calcium rapidly increases blood calcium concentrations to extremely high and potentially dangerous levels (Goff, 1999). Extremely high blood calcium concentrations may cause fatal cardiac complications and (perhaps most importantly) shut down the cow’s own ability to mobilize the calcium she needs at this critical time (Oetzel, 2011). Cows treated with IV calcium often suffer a hypocalcemic relapse 12 to 18 hours later (Curtis et al., 1978, Thilsing-Hansen et al., 2002). The problems with IV calcium treatment are illustrated in Figure 5.
Cows in Stage II milk fever are down but not flat out on their side. They exhibit moderate to severe depression, partial paralysis, and typically lie with their head turned into their flank. Stage III hypocalcemic cows are flat out on their side, completely paralyzed, typically bloated, and are severely depressed (to the point of coma). They will die within a few hours without treatment (Oetzel, 2011). Stage II and Stage III cases of milk fever should be treated immediately with slow IV administration of 500 ml of a 23% calcium gluconate solution. This provides 10.8 grams of elemental calcium, which is more than sufficient to correct the cow’s entire deficit of calcium (about 4 to 6 grams). Giving larger doses of calcium in the IV treatment has no benefit (Doze et al., 2008). Treatment with IV calcium should be given as soon as possible, as recumbency can quickly cause severe musculoskeletal damage.

To reduce the risk for relapse, recumbent cows that respond favorably to IV treatment need additional oral calcium supplementation once they are alert and able to swallow, followed by a second oral supplement about 12 hours later (Oetzel, 2011, Thilsing-Hansen et al., 2002).

Transient hypocalcemia can occur in cows whenever they go off feed or have periods of decreased intestinal motility (DeGaris and Lean, 2008). It can be difficult to tell which comes first - the hypocalcemia or the gastrointestinal stasis. Whatever the case, the two problems can positively reinforce each other. During the experimental induction of hypocalcemia, Huber et al. (1981) noted that ruminal contractions ceased well before the onset of clinical signs of milk fever. Off-feed cows, particularly in early lactation, are very likely to benefit from prompt oral calcium supplementation. Even herds with successful anionic salts programs and minimal clinical cases of milk fever will benefit from strategic use of oral calcium supplements (Oetzel, unpublished data, 2012). Start by supplementing all standing cows who have clinical signs of hypocalcemia and all down cows following successful IV treatment. For herds with a high incidence of hypocalcemia, it may also be economically beneficial to strategically supplement all fresh cows with oral calcium. Finally, cows with high milk yield in the previous lactation (>105% of herd average ME milk production) and lame cows have the best response to oral calcium supplementation (Oetzel, unpublished data, 2012). These cows gave 6.8 lbs more milk at first DHI test compared to un-supplemented cows.

Types of Oral Calcium Supplementation

The source of calcium in an oral supplement and its physical form greatly influence calcium absorption and blood calcium responses. Calcium chloride has the greatest ability to support blood calcium concentrations (Goff and Horst, 1993, 1994). This can be explained by its high calcium bioavailability and its ability to invoke an acidic response in the cow, which causes her to mobilize more of her own calcium stores. Providing a typical amount of elemental calcium chloride (e.g., 50 grams of elemental calcium) in a small oral dose provided the best absorption (Figure 6). Administering 100 grams of elemental calcium from calcium chloride in water resulted in excessively high blood calcium - this could shut down the cow’s own calcium homeostatic mechanisms and to invoke a calcitonin response to protect her from hypercalcemia.
The risk of aspiration is great when thin liquids are given orally, and calcium chloride is very caustic to upper respiratory tissues. Calcium propionate is more slowly absorbed (presumably because it is not acidogenic) and must be given at higher doses of elemental calcium (usually 75 to 125 grams).

Calcium carbonate in water did not increase blood calcium concentrations at all (see Figure 7) (Goff and Horst, 1993). This may be explained by its poorer bioavailability and by the alkalogenic response it can invoke.

A combination of calcium chloride and calcium sulfate delivered in a fat-coated bolus (Bovikalc®, Boehringer Ingelheim Vetmedica, St. Joseph, MO) resulted in more sustained improvements in blood calcium concentrations (see Figure 8) than were observed in previous studies with oral calcium chloride or calcium propionate in water (Sampson et al., 2009).

Subcutaneous Calcium Treatment
Subcutaneous calcium can be used to support blood calcium concentrations around calving, but has substantial limitations (Goff, 1999). Absorption of calcium from subcutaneous administration requires adequate peripheral perfusion. It may be ineffective in cows that are severely hypocalcemic or dehydrated. Subcutaneous calcium injections are irritating and can cause tissue necrosis; administration should be limited to no more than 75 ml of a 23% calcium gluconate solution (about 1.5 g elemental calcium) per site. Calcium solutions that also contain glucose should not be given subcutaneously. Glucose is very poorly absorbed when given by this route. Abscessation and tissue sloughing may result when glucose is given subcutaneously.

The kinetics of subcutaneously administered calcium indicate that it is well-absorbed initially, but that blood concentrations fall back to baseline values in about 6 hours (see Figure 9) (Goff, 1999). Thus, repeat doses would be necessary to equal the sustained blood calcium support that is possible with oral calcium boluses.
Timing of Oral Calcium Supplementation Relative to Calving

Strategies for giving oral calcium supplements around calving should include at least two doses - one at calving and a second dose the next day. The expected nadir in blood calcium concentrations occurs between 12 and 24 hours after calving (Goff, 2008, Sampson et al., 2009). Giving only one oral calcium supplement around calving time leaves the cow without support when her blood calcium concentrations are naturally the lowest. It is interesting to note that the original protocols for oral calcium supplementation called for 4 doses - one about 12 hours before calving, one at calving, one 12 hours post-calving, and one 24 hours post-calving. It was very difficult to predict when at cow was in fact about 12 hours from expected calving, and many cows calved without receiving this dose (Oetzel, 1996). The dose at calving is not practically challenging to administer, and providing a dose sometime the day after calving will provide critical support around the time of nadir and can still be practical in large dairies where the post-fresh pen is locked up just once daily.

Milk Fever Prevention - Dietary Calcium Restriction

The traditional method of preventing milk fever has been to restrict calcium intake during the dry period. If extremely low calcium diets (< 20 grams of daily calcium) are fed before parturition and high-calcium diets are fed after parturition, the incidence of milk fever can be drastically reduced (Green et al., 1981). Low calcium diets prior to calving apparently prevent the cow’s active intestinal calcium absorption and bone calcium resorption mechanisms from becoming quiescent and unable to respond to the sudden calcium outflow that occurs at parturition. Calcium intake during the dry period is usually restricted by replacing some or all of the alfalfa in a dry cow diet with a grass hay and using additional corn silage and concentrates.

Milk Fever Prevention - Dietary Acidification

Dietary acidity or alkalinity is more important in controlling milk fever than calcium intake. The use of diets low in dietary cation-anion difference (DCAD) to prevent milk fever has been extensively studied and reviewed (DeGaris and Lean, 2008). A large meta-analysis (Charbonneau et al., 2006) demonstrated that reducing pre-fresh DCAD by 300 meq/kg of diet dry matter (a typical approach) reduced the odds for clinical milk fever 5.1-fold, reduced urinary pH from 8.1 to 7.0, and reduced dry matter intake by 11.3%. It is important to implement a low DCAD strategy only in herds that already have good intakes in the pre-fresh group and can withstand an 11% intake reduction. Despite the expected decrease in pre-fresh dry matter intake, post-fresh intakes are improved when low DCAD diets are fed (Eppard et al., 1996, Joyce et al., 1997). Beede et al. (1992) reported 3.6% more ME milk when low DCAD diets are fed.

Milk Fever Prevention - Dietary Magnesium

Magnesium also plays an important role in maintaining calcium homeostasis around calving (DeGaris and Lean, 2008). A large meta-analysis (Lean et al., 2006) found that increasing dietary magnesium greatly reduced the odds for clinical milk fever. Magnesium is known to participate in calcium homeostasis via release of parathyroid hormone and the synthesis of the active form of vitamin D (1,25 dihydroxycholecalciferol). Total intakes of about 40 to 50 grams of dietary Mg (about 0.30 to 0.45% of diet dry matter, depending on total diet dry matter intake) have been suggested (DeGaris and Lean, 2008), although this is complicated because of the interactions between other dietary factors (DCAD, dietary calcium, and dietary phosphorus).
References
Guard, C. L. 1996. Fresh cow problems are costly; culling hurts the most. Hoard’s Dairyman 141:8.
Managing Energy Metabolism in Transition Dairy Cows

Thomas R. Overton
Department of Animal Science
Cornell University

Management to support the metabolic adaptations related to energy metabolism that a dairy cow undergoes during the transition period and early lactation is a critical factor in transition period success. Energy balance is tightly linked with reproductive performance (Butler and Smith, 1989), aspects of health and immunity (LeBlanc, 2010), and markers of excessive negative energy balance are generally negatively associated with milk yield (Ospina et al., 2010). Although a common notion is that milk yield is the major driver of negative energy balance, several data summaries (Santos et al., 2009; reviewed by Grummer et al., 2010) suggest that the relationship of negative energy balance is actually greater with dry matter intake (DMI) than with milk yield. Therefore, the major determinant of successful management of energy metabolism in transition cows may be the degree and rate to which energy intake increases during the early postpartum period.

Clearly, nutritional and environmental management of dairy cattle during the dry and transition period have important carryover ramifications both for DMI and overall lactational and reproductive performance along with health in early lactation. The purpose of this paper is to briefly overview intake regulation in dairy cattle, describe key metabolic changes in transition cows as they integrate with intake regulation and then to review key nutritional factors during both the prepartum and postpartum period that impact peripartal DMI and energy metabolism so that we can optimize energy and nutrient intake and subsequent performance and health outcomes.

INTAKE REGULATION IN DAIRY CATTLE

The first key concept to understand is that intake regulation in dairy cattle is complex. The various metabolic factors that influence DMI in dairy cattle were well-reviewed by Ingvartsen and Andersen (2000) and includes a variety of direct and indirect signals related to the environment, immune system, adipose tissue, signals from the gut and pancreas, and energy sensing of the liver relative to overall energy demand (Figure 1). It is likely that changes in these signals (and cow-to-cow variation in response to various environmental and metabolic stimuli) are responsible both for changes in overall average pen DMI but also variation in cow to cow DMI that likely is more associated with transition management challenges than average pen DMI per se.

More recently, Allen and coworkers (Allen et al., 2005; Allen et al., 2009) proposed that a major regulator of DMI in ruminants, and particularly dairy cattle, was hepatic energy status. This is largely driven by oxidation of fuels such as propionate derived from ruminal fermentation of rapidly fermentable carbohydrates and nonesterified fatty acids (NEFA), which are increased in the bloodstream during periods of negative energy balance and body fat mobilization (Figure 2). In periods when oxidative fuel metabolism by the liver exceeds liver energy requirements, the brain is signaled to decrease DMI. As will be discussed more in detail below, this theory is particularly attractive in explaining metabolic influences on DMI during the prepartum period. As will be described below, modulation of these pathways, particularly by propionate is less likely during the immediate postpartum period because of the large increases in liver energy demands along with other reasons that will be discussed below.

METABOLIC ADAPTATIONS IN THE TRANSITION COW

It is well-recognized that the dairy cows undergo important metabolic adaptations during late pregnancy to support fetal demands and at the onset of lactation to support milk production. These homeorhetic adaptations involved in the regulation of nutrient and energy partitioning during late pregnancy and early lactation occur in a variety of target tissues, and typically involve changes in responses of tissues such as adipose tissue and muscle to homeostatic signals such as insulin and epinephrine (Bauman and Currie, 1980; Bell, 1995). As described above, one major adaptation includes a large increase in glucose demand by the mammary gland that is supported by dramatically increased glucose output by the liver (Reynolds et al., 2003). In addition, peripheral tissues (primarily skeletal muscle) decrease their use of glucose for fuel (Bauman and Elliot, 1983; Petterson et al., 1993), thereby sparing glucose for use by the gravid uterus and lactating mammary gland. Furthermore, increased mobilization of body fat stores facilitated by changes in adipose tissue metabolism contributes to meeting increased whole-body needs for energy at the onset of lactation (Petterson et al., 1994). The net result of these adaptations is coordinated support of fetal needs and subsequent high milk production in the face of decreasing and eventually insufficient DMI during late pregnancy and early lactation.